8(3): 238-251 (2014)

DOI: 10.3153/jfscom.201430

Journal of FisheriesSciences.com

E-ISSN 1307-234X

© 2014 www.fisheriessciences.com

REVIEW ARTICLE

DERLEME MAKALESİ

ALTERNATIVE SEAFOOD PRESERVATION TECHNOLOGIES: IONIZING RADIATION AND HIGH PRESSURE PROCESSING

Nuray Erkan*1, Ali Günlü², İsmail Yüksel Genç³

^{1.} Istanbul University, Faculty of Fisheries, Department of the Seafood Processing and Quality Control, Istanbul, Turkey

² Muğla Sıtkı Koçman University, Faculty of Fisheries, Department of Seafood Processing and Quality Control, Kötekli/Muğla, Turkey

^{3.} Süleyman Demirel University, Faculty of Eğirdir Fisheries, Department of Seafood Processing and Quality Control, Eğirdir-Isparta, Turkey

Received: 29.11.2013 / Accepted: 13.02.2014 / Published online: 30.06.2014

Abstract: Seafood includes a number of high value food products with considerable economic importance. Fish freshness is the most important and fundamental single criterion for judging the quality of fish and fishery products. Fish is known to be a perishable product that requires effective preserving method to maintain quality and avoid food poisoning. Irradiation and high pressure treatment has been used to extend the shelf life of sea foods, especially fish and fish products, due to its microbial inhibition. Irradiation has been proposed as an alternative technique to thermal processing to destroy foodborne pathogens and spoilage organisms in order to enhance safety and shelf life of perishable foods. High hydrostatic pressure processing (HHP) is an alternative for pasteurization of food products as a non-thermal preservation method. HHP treatment can result in microbial destruction and product stabilization without affecting sensory qualities of foods. In this paper, the use of irradiation and high pressure treatments in seafood products preservation were reviewed.

Keywords: Fish, Seafood, Irradiation, High pressure, Auality; Food safety

 * Correspondence to: Nuray ERKAN, Istanbul University, Faculty of Fisheries. Ordu Caddesi No:200 Fatih/ Istanbul-TÜRKİYE
 Tel: (+90 212) 455 57 00/16415 Fax: (+90 212) 514 03 79
 E-mail: nurerkan@istanbul.edu.tr

Öz:

Su Ürünlerinde Alternatif Koruma Teknikleri: İyonize Radyasyon ve Yüksek Basınç Uygulamaları

Su ürünleri ekonomik önemi yanında yüksek değerli gıda ürünleri içinde yer alır. Balık ve balık ürünlerinin kalitesinin belirlenmesinde en önemli kriter tazeliktir. Balık ürünleri, gıda zehirlenmelerinin önlenmesi yanında kalitesinin korunması bakımından etkili bir koruma uygulama gerektiren hassas bir ürün grubudur. Işınlama ve yüksek basınç uygulamaları balık ve balık ürünlerinde mikrobiyal inhibisyonda, su ürünlerinin raf ömrünün artırılmasında etkilidir. Işınlama gıda kaynaklı patojenlerin ve bozulmadan sorumlu mikroorganizmaların yıkımı ile gıdaların raf ömrünü ve gıda güvenliğini artırmak için alternatif bir yöntem olarak önerilmektedir. Yüksek basınç uygulaması ısıl işlem olmayıp pastörizasyona alternatif bir muhafaza metodudur. Yüksek basınç uygulamaları ürünün duyusal özelliklerini etkilemeden mikrobiyolojik tehlikeleri elimine eder ve stabilizasyonu sağlar. Bu derlemede, su ürünleri muhafazasındaki ışınlama ve yüksek basınç uygulamaları hakkında bilgi verilmiştir.

Anahtar Kelimeler: Balık, Su ürünleri, Işınlama, Yüksek basınç, Kalite, Gıda güvenliği

Introduction

The role of fish in nutrition is being increasingly recognized as it supplies a good balance of protein, vitamins, and minerals (calcium, phosphorus, and iron) associated with relatively lowcalorie content. Apart from having a better protein and calorie ratio than red meat, sea foods are also rich in unsaturated fatty acids (Sioen, 2007).

Seafood consumption varies greatly across individuals, families, cultures and countries. As with any complex human behaviour, variation in seafood consumption will be influenced by many inter relating factors, such as properties of the food (quality and sensory attributes), characteristics of the individual (preferences, personality and knowledge), or characteristics of the environment such as availability, situation and seasons. Generally, consumers prefer fresh fish to frozen, canned, salted, pickled, smoked or dehydrated products (Erkan and Çağıltay, 2011).

The high levels of moisture, nutrient content, weak connective tissue and neutral pH of fresh fish render itself as a perishable product. The quality of fish is composed of three separate components. These include (1) initial quality of the fish (intrinsic quality), that is, the quality at the time of the catch, depending on catch location, species, size, sex, composition, etc.; (2) quality, influenced by the handling conditions starting from harvest, on-board handling, icing, filleting, gutting etc.; and (3) the microbial quality (initial microbiota, existance of pathogens). The spoilage of fish is usually caused by biological reactions such as oxidation of lipids, activities of the fish's autolytic enzymes, as well as the loss of protein functionality, microbial growth and metabolic activities, resulting in a short shelf life of fish and other seafood products (Ababouch et al., 1996; Ashie et al., 1996; Erkan, 2003). Thus, maintenance methods to keep the quality of seafood's and delay the deterioration of fresh fish during storage have always had significant place to pursue for fisheries scientist.

Mostly used traditional preservation techniques such as chilling and super chilling generally insufficient for the quality maintenance, long shelf life and safety of the product. In terms of inhibition or elimination of quality loss and pathogen microorganisms in seafood, newly developed technologies are coming into prominance. The most known of these technologies are radiation, high pressure processing (HPP). The effectiveness of these technologies have been proved by researchers (Jeevanandam et al., 2001; Savvaidis et al., 2002; Linton et al., 2003; Zare, 2004; Chéret et al., 2005; Ramirez-Suarez and Morrissey, 2006; Gómez-Estaca et al., 2007a; Özden et al., 2007a,b; Yağız et al., 2007; Arvanitoyannis et al., 2009; Erkan et al., 2010; Erkan and Üretener. 2010: Günlü et al., 2014)

Since the global demand for fishery products is increasing (Erkan and Çağıltay, 2011), there is a need for efficient preservative methods. The major problem with respect to distribution of seafood or fishery products is their susceptibility to spoilage, mainly due to the contamination of spoilage and pathogenic microorganisms (Erkan, 2003). Novel technologies (food irradiation and high pressure treatment) are process that have proven to be successful (Ashie et al., 1996), not only in ensuring the safety, but also in extending the shelf life of fresh meat, chicken, fish and fish products because of its high effectiveness in inac-

tivating pathogens and spoilage organisms without deteriorating product quality.

Irradiation

Food irradiation is a process for the treatment of food products to enhance their shelf life and to improve microbial safety. Generally, ionizing radiations emitted by radioisotopes, Cobalt-60, and Cesium-137 are used for food preservation. According to many researchers food irradiation, sometimes called "cold pasteurization," has been described as the most extensively studied food processing method in the history of humankind and is endorsed by virtually all medical and scientific organizations. Food irradiation is a process in which irradiation energy, which travels through space or matter in invisible waves, is applied to kill microorganisms or insects in foods. The quantity of energy absorbed by the food during irradiation is called "absorbed dose." The international unit for absorbed dose is the Gray (Gy). The dose used varies according to the type of food and the desired effect. Treatment levels can be grouped into three general categories: (1) "Low" dose, up to 1 kGy, (2) "Medium" dose, 1-10 kGy and (3) "High" dose, greater than 10 kGy. Medium dose is used to reduce spoilage and pathogenic microorganisms on various foods, to improve technological properties of food and to extend the shelf-life of sensitive foods (Mendes et al., 2005; Venugopal et al., 1999).

Positive information reported regarding the impact of irradiation dose on the shelf life and micro flora and sensory and physical properties of fish, shellfish, molluscs, and crustaceans. The first studies on this subject have been on the determination of the optimum dose (Arvanitoyannis et al., 2009; Snauwert et al., 1977; Reinacher and Ehlermann, 1978) (see Table 1). The optimum irradiation dose for Herring (Clupea herring) was found to be 1-2 kGy, which yields a shelf life of 10-14 days at 2°C (Snauwert et al., 1977). According to Reinacher and Ehlermann, (1978) have been reported the optimum dose 1-2 kGy for Ocean perch (Sebastodes alutus) and this application which led to a shelf life 25-28 days at 0.6 °C.

Optimum irradiation dose for the different fishes have been reported and have been found suitable 1.5–3 kGy, for mackerel (*Rastrellinger kanagurta*) 1.5 kGy, for White pomfret (*Stomateus cinereus*), Black pomfret (*Parastomatus niger*) 1 kGy, for Sole (*Parophyrs vetulus*) 2–3

kGy (Arvanitoyannis et al., 2009). The shelf life of Bombay duck (Harpodon nehereus), under refrigeration was shown to be about 5-7 days. Radiation doses of 1.5-2.5 kGy extended the shelf life to about 15-20 days (Kumta et al., 1970). According to Chuaqui-Offermanns et al. (1988), whitefish (Coregonus clupeaformis) were gamma irradiated at 0.82 and 1.22 kGy, and stored at 3°C for 17-21 days. The non-irradiated samples exhibited a sensory shelf life of 7-8 days, whereas those of the irradiated ones were extended by 10-13 days. Ahmed et al. (1997) studied irradiated Nagli fish (Sillago sihama) at a dose of 2-3 kGy gave a shelf life of 19 days stored at 1-2°C in comparison to a storage life of 8 days for the non-irradiated samples. According to Mendes et al. (2005), fresh Atlantic horse mackerel (Trachurus trachurus) were gamma irradiated at 1 and 3 kGy, and stored in ice at $0 \pm 1^{\circ}$ C for 23 days. The non-irradiated samples exhibited a sensory shelf life of 8 days, whereas those of the irradiated ones were extended by 4 days. Özden et al. (2007a;b) determined the influence of gamma irradiation (2.5-5 kGy) and post-irradiation storage up to 15-17 days at 4°C on some chemical and microbiological criteria of sea bass and sea bream. The total volatile basic nitrogen formation, thiobarbituric acid values and total viable count was lower in irradiated fish than in the nonirradiated. The synergistic effect of irradiation in conjunction with other techniques such as salting, smoking, freezing, and vacuum packaging has also reported (Savvaidis et al., 2002; Özden et al., 2007 a, b; O'bryan et al., 2008; Arvanitoyannis et al., 2009). Jeevanandam et al. (2001) reported shelf life of non-irradiated and irradiated (1 and 2 kGy) Threadfin bream (Nemipterus japonicus) packaged in polyethylene pouches and dipped in 10% (w/w) sodium chloride was 9 day and 14-28 day. Total mesophilic counts for salted vacuumpacked, refrigerated control and irradiated sea bream reached an average value of 7 log cfu/g after 14 days (0 kGy), 23 days (1 kGy) and 40 days (3 kGy) (Jeevanandam et al., 2001). Savvaidis et al. (2002) reported counts of 7 log cfu/g for vacuum packed trout after 9, 14 and 24 days for non-irradiated and irradiated samples at 0, 0.5 and 2 kGy, respectively. Kasımoglu et al. (2003) studied irradiated sardines (Sardina pichardus) at a dose of 2-3 kGy and vacuum packaged in polyethylene bags gave a shelf life of 21 days stored at 4°C in comparison to a storage life of 10 days for the non-irradiated samples. Chouliara et al., (2005) reported that initial total volatile basic ni-

trogen (TVB-N) levels of vacuum packedirradiated (1–3 kGy) sample stored under refrigeration sea bream were 27.5 mg/100 g, 27.3 mg/100 g and 25.1 mg/100 g, reaching the acceptable limit at day 10 in control, at day 21 and 28 for 1 and 3 kGy irradiated sea bream.

The positive effects of irradiation in quality of sea are as follows:

- Microbial load decreased,
- Lower total volatile basic nitrogen value,

The negative effects of irradiation in quality of sea are as follows:

- Based on species, irradiation may cause increase in Tiobarbituric acid (TBA) values as a result of radiolytic products formation. However, in most of the studies it has been claimed that mentioned values have lower compared to non - treated samples.
- Some fatty acids decreased by irradiation treatments at all doses.
- Thiamin loss was more severe at higher doses (≥4.5 kGy), whereas riboflavin was not affected.
- L* value decreased, whereas a* and b* values increased throughout storage.
- pH values decreased gradually (Chouliara et al., 2005; Genç and Diler, 2013; Jeevanandam et al., 2001).

High Pressure Treatment

High-pressure treatment is effective in reducing microorganisms, and is known as a good method for inactivating pathogens in food materials. Pressure treatment causes changes in morphology, cell wall and membrane, biochemical reactions, and genetic mechanisms of microorganisms. High-pressure processing offers a number of advantages over conventional thermal processing. For instance, high pressure inactivates spoilage and pathogenic bacteria, without effecting the vitamin content, colour and flavour. This allows the production of wholesome foods, with little loss in nutritional and sensory qualities (Amanatidou et al., 2000; Yuste et al., 2001; Balasubramaniam and Farkas, 2008). High hydrostatic pressure (HHP) treatment, in combination with good refrigeration and handling practices, provides a means to increase fish product shelflife (Linton et al., 2003; Zare, 2004; Chéret et al., 2005; Ramirez-Suarez and Morrissey, 2006;

Yağız et al., 2007; Erkan et al., 2010; Erkan and Üretener, 2010; Günlü et al., 2014). Although there is a increasing interest in the application of HHP technology to fish-based products, limited research has been performed regarding the use of HHP in the development of high-quality fresh seafood products (Linton et al., 2003). Zare (2004) determined the effects of HHP (at 200 MPa for 30 min and 220 MPa 30 min) on microbiological, chemical, and sensory properties of tuna stored in a refrigerator (4°C). Results of this study indicate that the shelf life of HHP treated and untreated tuna stored in refrigerator as determined by the overall acceptability sensory scores was 18 and 6 days, respectively. Ramirez-Suarez and Morrissey (2006) found that high pressure (275 MPa and 310 MPa for 2, 4 and 6 min) increased the shelf-life of albacore tuna to >22 days at 4°C based on microbiological numbers. Erkan et al., (2010) found that a pressure treatment of 220 MPa for 5 min at 3°C increased the microbiological shelf-life of red mullet, based on a psychrotrophic count of 10⁶, from 11 days at 4°C to 15 days. Treatment at 330 MPa for 5 min at 25°C increased it further to 17 days. Erkan and Üretener (2010) also reported that a pressure treatment of 250 MPa for 5 min at 3°C and 15°C increased the microbiological shelf-life of gilthead bream from 10 days to 16 and 13 days respectively. It is apparent that for all microorganisms examined, obtained populations were higher for unpressurized fish than those for pressurized fish species stored in a refrigerator throughout the entire storage period. Günlü et al., (2014) determined the effect of HHP on the shelf life of vacuum packed rainbow trout fillets. In accordance with chemical and microbiological results 4 days shelf life extension was determined for the chilled stored (4±1 °C) fillets after HPP application. Lower microbiological counts have been reported for pressurized tuna (Zare, 2004), sea bass (Chéret et al., 2005), albacore tuna (Ramirez-Suarez and Morrissey, 2006), mahi mahi-rainbow trout (Yağız et al., 2007) and rainbow trout (Günlü et al., 2014). Practices in this regard are presented in Table 3. Pressures between 200 and 600 MPa are commonly applied to extend the shelf-life of products decreasing the counts of spoilage microbiota. After HP treatments at 200 MPa for 30 and 60 min, fresh salmon resulted in a product with total viable counts lower than 100 cfu/g (Amanatidou et al., 2000). HP processing of cold-smoked dolphin fish at 300 MPa for 15 min reduced the counts of aerobic and lactic

acid bacteria to levels below the detection threshold for three weeks (Gómez-Estaca et al., 2007b). HP technologies can have detrimental effects on the quality of smoked fish. Colour changes following treatments include higher L* values associated with higher opacity. Harder textures and lipid oxidation are also alterations reported in pressurized smoked fish products. Of particular relevance is smoked salmon, one of the most sensitive fish products to this processing technology, which intense red colour lightened after pressurization. The effect of HP on sensory quality varies within various seafood products and different pressurization conditions. Proteins can be denatured by the process, especially above 300 MPa. This may result in raw high protein products such as beef and fish taking on a "cooked" appearance, depending on processing conditions used (Lakshmanan et al., 2005; Karim et al., 2011). Matser et al. (2000) observed that pressure at 100 MPa did not affect the hardness of frozen cod while treatments at 200 and 400 MPa increased this characteristic. Increased rates of lipid oxidation during the storage of pressurized fish (Cheah and Ledward, 1996) were related with high concentration of polyunsaturated fats and oxidative changes induced by pressure (Angsupanich and Ledward, 1998). According to the results of this study, advantages of HHP in seafood were reported as lower microbial count and higher shelf life. Disadvantage of HHP in sea food are colour changes, lipid oxidation, and texture changes (Medina-Meza et al., 2014).

Conclusion

High pressure processing and irradiation technology significantly decrease the rate of microbial and chemical spoilage developed in packed and unpackaged raw fish stored on ice and refrigerator. As a result of this reduction, the shelf-life of perishable products (i.e. sea foods) are prolonged from 50 % to 75 % compared to control groups. By taking into account the category of seafood which is perishable, shelf-life extension is much higher when novel technologies are used compared to applied traditional methods. Additionally, higher rate of food borne pathogen elimination could be achieved with these mentioned technologies.

Seafood	Optimum dose	Maximum shelf life	References
Ocean perch (Sebastodes alutus)	1–2 kGy	25-28 days at 0.6 °C	Reinacher and Ehlermann,
			1978
Herring (Clupea herring)	1–2 kGy	10-14 days at 2°C	Snauwert et al., 1977
Whitefish (Coregonus clupeaformis)	1.5–3 kGy	15–29 days, under refrigeration.	Arvanitoyannis et al., 2009
European hake (Merluccius merluccius)	1-1,5 kGy,	24–28 days at 0.5 °C.	Arvanitoyannis et al., 2009
Mackerel (Rastrellinger kanagurta)	1.5 kGy	21–24 days at 0°C,	Arvanitoyannis et al., 2009
		13–15 days at 5°C and	
		7–11 days at 7.8°C.	
Mackerel (Scomber scombrus)	2.5 kGy	30–35 days at 0.6 °C	Arvanitoyannis et al., 2009
White pomfret (Stomateus cinereus)	1 kGy	4 week at 0-2°C	Arvanitoyannis et al., 2009
Black pomfret (Parastomatus niger)	1 kGy	10-16 days at 0-2°C	Arvanitoyannis et al., 2009
Sole (Parophyrs vetulus)	2-3 kGy,	4-5 weeks	Arvanitoyannis et al., 2009
Grey sole (Glyptocephalus cynoglossus)	1-2 kGy	29 days at 0.6°C or 10–11 days at 5.6°C	Arvanitoyannis et al., 2009
Haddock fillets (<i>Melanogrammus aeglefinus</i>)	1,5-2,5 kGy	22–25 days at 5.6°C and 30–35 days at 0.6°C	Arvanitoyannis et al., 2009

Table 1. The optimum radiations dose for different sea foods and the shelf life of fish

Table 2: The shelf life of non-irradiated and irradiated se	a foods
---	---------

Seafood	Shelf life of non-irradiated samples	Dose	Shelf life	References
Yellow perch fillets	10 day at 1°C	1-2 kGy	18 day at 1°C	Arvanitoyannis et al., 2009
(Perca flavescens)	10 day at 1°C	3-6 kGy	43-55 day at 1°C	
	6 day at 6°C	3-6 kGy	18-24 day at 1°C	
Bombay duck	5 day packaged in polyethylene pouches	2,5 kGy	packaged in polyethylene pouches 20-	Arvanitoyannis et al., 2009
(Harpodon nehereus)			22 day at 0-2°C	
Shucked surf clam meats	10 day air packed in plastic pouches at 0,6 °C	1-2 kGy	40 day air packed in plastic pouches at	Arvanitoyannis, et al., 2009
(Spisula solidissima)			0,6 °C	
Shucked surf clam meats	10 day air packed in plastic pouches at 0,6 °C	4,5 kGy	50 day air packed in plastic pouches at	Arvanitoyannis et al., 2009
(Spisula solidissima)			0,6 °C	
Shucked mussel meats	3 week air packed at 3 °C	1,5-2,5 kGy	6 week air packed at 3 °C	Arvanitoyannis et al., 2009
Cooked king crabmeat	5-9 day vacuum packed at 0,6 °C	2 kGy	35 day vacuum packed at 0,6 °C	Arvanitoyannis et al., 2009
(Paralithides camtschatica)				
Precooked crabmeat (Portunus pelagicus)	7 day air packed in plastic bags at 3 °C	2 kGy	28 day air packed in plastic bags at 3 °C	Arvanitoyannis et al., 2009
Norwegian lobster	4 week blanched at 0-1 °C	2-3 kGy	5-6 week blanched at 0-1 °C	Arvanitoyannis et al., 2009
(Nephrops norvegicus) tails		-		-
Salted trout	7 day vacuum packaged	0,5-2 kGy	Vacuum packaged 18-28 days at 4°C	O'bryan et al., 2008
Salted sea bream	14-15 day in vacuum packaging	1-3 kGy	in vacuum packaging 27-28 days at 4°C	Chouliara et al., 2004
Atlantic horse mackerel (<i>Trachurus trachurus</i>)	8 day at 0-1°C	1-3 kGy	12 day at 0-1°C	Savvaidis et al., 2002
Threadfin bream	9 day packaged in polyethylene pouches and	1-2 kGy	packaged in polyethylene pouches and	Jeevanandam et al., 2001
(Nemipterus japonicus)	dipped in 10% (w/w) sodium chloride	-	dipped in10% (w/w) sodium chloride 14	
			and 28 day in ice storage	
Threadfin bream (Nemipterus japonicus)	8 day packaged in polyethylene	1-2 kGy	packaged in polyethylene	Jeevanandam et al., 2001
	pouches,	-	pouches, 12 and 22 day in ice storage	
Blue jack mackerel (Trachurus picturatus)	3-4 day at 3°C	1-2 kGy	8 day at 3°C	Mendes et al., 2000
Smoked salmon fillets	1 month under refrigeration	2-4 kGy	3-4 month under refrigeration	Lakshmanan et al., 1999
Eviscerated Indian Mackerel	14 day in ice storage	1,5 kGy	20 day in ice storage	Lakshmanan et al., 1999
Rastrelliger kanagurta)		•		
Nagli fish (Sillago sihama)	8 day at 1-2°C	2-3 kGy	19 day at 1-2°C	Ahmed et al., 1997
Whitefish	7 day at 3°C	0,82-1,22	20-28 day at 1°C	Chuaqui-Offermanns et al.,
(Coregonus clupeaformis)	-	kGy	17-21 day at 3°C	1988
Peeled European brown shrimp	9-16 day at 2°C	1,5 kGy	23 day at 2°C	Vyncke et al., 1976
(C. vulgaris and C. crangon)	•		•	•
Bombay duck (Harpodon nehereus)	5-7 day under refrigeration	1,5-2,5	15-20 day under refrigeration	Kumta et al., 1970

Table 2 Analisation of his	h	the availter of a of a d much to to
LADIE 5. ADDITCATION OF MIC	n pressure irealment to improve	the duality of sealood broducts.
Lubic of Application of mg	in pressure dediment to improve	the quality of seafood products

Seafood	High pressure condition	Effect	References
Rainbow trout	in combination with vacuum packaging 220	According to the chemical and microbiological shelf life analysis results	Günlü et al., 2014
	MPa for 15 min at 5 °C, kept in chilled $(4\pm1 \text{ °C})$	of rainbow trout fillets, shelf life increases of 4 days.	
Shrimp (Black tiger	Shrimp was high-pressure processed at selected	The effect of high-pressure processing on quality and shelf life of black	Kaur et al., 2013
chrimn)	pressure levels of 100, 270, and 435 MPa for 5	tiger shrimp was studied. Changes in physical, biochemical, and	
shrimp)	min at room temperature (25±2 °C).	microbiological characteristics after processing and during subsequent	
		chilled storage were examined for 35 days.	
Prawn	in combination with vacuum packaging 100,	pH and TBA values increased after HP treatment and significantly	Bindu et al., 2013
	270, 435, 600 MPa for 5 min at 25 °C, kept in	increased on storage. Reduction of TMA and TVB-N values after HP	
	chilled $(2\pm 1^{\circ}C)$	treatment was observed and during storage there was a gradual increase	
		in all samples. Hardness, whiteness (L* value) and yellowness (b* value)	
		increased with increasing pressure and redness (a* value) was found to	
		decrease.	
Smoked cod	in combination with vacuum packaging	400 MPa for 10 min or 500 MPa for 5 min successfully to extend the	Montial et al., 2012
	400, 500 and 600 MPa for 5 and 10 min at 5°C	refrigerated shelf life of smoked cod.	
Red abalone		According to chemical parameters	Briones-Labarca et al., 2012
	control	9 day shelf- life	
	500 MPa for 8 min at 20°C and	12 day shelf- life	
	550 MPa for 3 and 5 min at 20°C	12 day shelf- life	
Tuna	Yellow fin tuna chunks packed in ethyl vinyl	The K-value of tuna was found to decrease with increase in pressure.	Kamalakanth et al., 2011
	alcohol (EVOH) films. Pressure treatments of	High pressure treatment showed a decrease in the bacterial load.	
	100, 200 and 300 MPa.	200 MPa treated tuna chunks was found most acceptable.	
Herring	in combination with vacuum packaging	Control 6 day shelf-life	Karim et al., 2011
(Clupea harengus)	200 MPa for 1 min at 2°C	11 day shelf- life	
	200 MPa for 3 min at 2°C	17 day shelf- life	
	250 MPa for 1 min at 2°C	13 day shelf- life	
	250 MPa for 3 min at 2°C	16 day shelf- life	
	300 MPa for 1 min at 2°C	18 day shelf- life	
	300 MPa for 3 min at 2°C	16 day shelf- life	
Cold smoked salmon	control	6 week shelf- life	Erkan et al., 2011
	250 MPa, 3 °C for 5 min and	8 week shelf- life	
	250 MPa, 25 °C for 10 min	8 week shelf- life	<u>.</u>
Sea bream	Control	15 day shelf- life	Erkan and Üretener, 2010
	250 MPa for 3 min and 5 °C	18 day shelf- life	
	250 MPa for 3 min and 15°C	18 day shelf- life	

 Table 3. Continued

Seafood	High pressure condition	Effect	References
Red mullet	control	12 days shelf- life	Erkan et al., 2010
	220 MPa for 5 min at 25 °C	14 days shelf- life	
	330 MPa for 5 min at 3 °C.	15 days shelf- life	
Squid	300 MPa for 20 min at 20°C	The inhibition of trimethylamine-N-oxide demethylase (TMAOase)	Gou et al., 2010
(Todarodes pacificus)		activity and off-odour production in squid treated at 300 MPa for 20 min	
		was investigated during 12 days of refrigerated storage. The number of	
		total aerobic bacteria in squid was reduced by 1.26 log units after HP.	
Coho salmon	For salmon, HHP treatments were applied at	Results have shown that HHP treatment reduced the initial microbial	Briones et al., 2010
(Oncorhynchus	135, 170, and 200 MPa for 30 s, while abalone	counts of salmon from 3.16 to 2.2 log units, moreover abalone was	
kisutch)	treatment consisted of 500 MPa for 8 min and	reduced from 1.3 log to undetectable levels (<10 cfu/g). HHP-treatment	
and abalone (Haliotis	550 MPa for 3 or 5 min.	used for salmon were not sufficient to extend their shelf-life. However, the	
rufescens)		shelf-life of abalone was extended from 30 (control samples) to >65 days	
		irrespective of HHP treatment applied.	
Oyster	260, 400 or 600 MPa for 5 min at 20°C	HP treatment influenced the gross composition, microbiological	Cruz-Romero et al., 2008a
(Crassostrea gigas)		composition and quality of oyster tissue compared to untreated oysters.	
		This process also decreased microbial levels and extended the shelf-life	
		of oysters	
Oyster	260 MPa for 3 min or 400 MPa for 5 min at	HP treatment, in combination with adequate chilled storage and MAP,	Cruz-Romero et al., 2008b
(Crassostrea gigas)	20°C	extend the shelf-life of oysters.	
Cold-smoked	300 MPa for 15 min at 20°C	In microbiological terms, high pressure did not prolong the shelf life	Gómez-Estaca et al., 2007b
dolphinfish		though it did achieve better microbiological quality during chilled storage	
(Coryphaena		sensory quality was preserved	
hippurus)			

Table 3. Continued

Seafood	High pressure condition	Effect	References
Mahi mahi and	300-450-600 MPa for 15 min 6 °C	300 MPa for rainbow trout and 450 MPa for mahi mahi are the optimum	Yağız et al., 2007
Rainbow trout		HPP conditions for controlling microbial load, lipid oxidation, and colour	
		changes.	
Albacore tuna	275 and 310 MPa for 2, 4, and 6 min	Pressure improved the shelf life of albacore muscle for > 22 days at 4 °C.	Ramirez-Suarez et al., 2006
		control samples 5 day	
Tuna	150 MPa, 200 MPa, 220 MPa,	Lower microbiological counts	Zare, 2004
	holding times (30 min, 15 min) at 20 °C		
Hake	400 MPa (three 5-min cycles) at 7 °C stored at	The microbial load was initially reduced by two log units by pressurization	Hurtado et al., 2000
(Merluccius	3°C	400 MPa. Shelf life was prolonged by about one week in the lot	
capensis)		pressurized at 200 MPa and about two weeks in the lot 400 MPa.	
Fresh	High pressure HP processing at low	A shelf life extension of 2 days was obtained after a HP treatment	Amanatidou et al., 2000
Atlantic salmon	temperatures combined with modified	of 150 MPa for 10 min at 5 °C compared to unpressurised, vacuum-	
	atmosphere packaging (MA)	packed salmon. MA storage (50% O ₂ -50% CO ₂) alone extended the shelf	
		life of salmon for 4 days at 5 °C.	
Cod	0, 200, 400, 600 and 800 MPa for	After treatment at pressures above 400 MPa, the oxidative stability	Angsupanich and Ledward, 1998
(Gadus morhua)	20 min)	of the lipids in cod muscle were markedly decreased as measured	
		by the thiobarbituric acid (TBA) number.	

Acknowledgments

This work was supported by the Research Fund of Istanbul University (Project Number 23988). One part of this manuscript was presented at the Advanced Non-thermal Processing in Food Technology: Effects on Quality and Shelf Life of Food and Beverages Conference, May 7-10 2012, Kuşadası, Turkey.

References

Ababouch, L.H., Souibri, L., Rhaliby, K., Ouahdi, O., Battal, M., Busta, F.F., (1996). Quality changes in sardines (*Sardina pilchardus*) stored in ice and at ambient temperature, *Food Microbiology*, **13**: 123-132.

doi: 10.1006/fmic.1996.0016

Ahmed, I.O., Alur, M.D., Kamat, A. S., Bandekar, J.R., Thomas, P. (1997).
Influence of processing on the extension of shelf-life of nagli-fish (*Sillago sihama*) by gamma irradiation, *International Journal of Food Science and Technology*, **32**: 325-332.

doi: <u>10.1046/j.1365-2621.1997.00409.x</u>

Amanatidou, A., Schlüter, O., Lemkau, K., Gorris, L.G.M., Smid, E.J., Knorr, D., (2000). Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon, *Innovative Food Science* and Emerging Technologies, 1: 87-98.

doi: 10.1016/S1466-8564(00)00007-2

Angsupanich, K., Ledward, D.A., (1998). High pressure treatment effects on cod (*Gadus morhua*) muscle, *Food Chemistry*, **63**: 39-50.

doi: <u>10.1016/S0308-8146(97)00234-3</u>

Arvanitoyannis, I.S., Stratakos, A., Mente, E., (2009). Impact of irradiation on fish and seafood shelf life: A comprehensive review of applications and irradiation detection, *Critical Reviews in Food Science and Nutrition*, **49**: 68-112.

doi: 10.1080/10408390701764278

Ashie, I., Smith, J., Simpson, B., (1996). Spoilage and shelf-life extension of fresh fish and shellfish, *Critical Review in Food Science and Nutrition*, **36**: 87-121. doi: 10.1080/10408399609527720

Balasubramaniam, V.M., Farkas, D., (2008). High pressure food processing, *Food Science Technology International*, **14**: 413-418.

doi: <u>10.1177/1082013208098812</u>

Bindu, J., Ginson, J., Kamalakanth, C.K., Asha,
K.K., Srinivasa Gopal, T.K., (2013).
Physico-chemical changes in high pressure treated Indian white prawn (*Fenneropenaeus indicus*) during chill storage, *Innovative Food Science and Emerging Technologies*, 17: 37-42.

doi: 10.1016/j.ifset.2012.10.003

Briones-Labarca, V., Perez-Won, M., Zamarca, M., Aguilera-Radic, J.M., Tabilo-Munizaga, G.T., (2012). Effects of high hydrostatic pressure on microstructure, texture, colour and biochemical changes of red abalone (*Haliotis rufecens*) during cold storage time, *Innovative Food Science and Emerging Technologies*, **13**: 42-50.

doi: 10.1016/j.ifset.2011.09.002

Briones, L.S., Retes, J.E., Tabilo-Munizaga, G.E., Pérez-Won, M.O., (2010). Microbial shelf-life extension of chilled Coho salmon (*Oncorhynchus kisutch*) and abalone (*Haliotis rufescens*) by high hydrostatic pressure treatment, *Food Control*, 21: 1530-1535.

doi: 10.1016/j.foodcont.2010.04.027

Cheah, P.B., Ledward, D.A., (1996). High pressure effects on lipids oxidation on minced pork, *Meat Science*, **43**: 123-134.

doi: 10.1016/0309-1740(96)84584-0

Chéret, R., Chapleau, N., Delbarre-Ladrat, C., Verrez-Bagnis, V., De Lamballerie, M., (2005). Effects of high pressure on texture and microstructure of sea bass(*Dicentrarchus labrax* L.) fillets, *Journal of Food Science*, **70**: 477-483.

doi: <u>10.1111/j.1365-2621.2005.tb11518.x</u>

Chouliara, I., Savvaidis, I.N., Panagiotakis, N., Kontominas, M.G., (2004). Preservation of salted, vacuum-packaged, refrigerated sea bream (*Sparus aurata*) fillets by irradiation: microbiological, chemical and sensory attributes, *Food Microbiology*, **21**: 351-359.

doi: 10.1016/S0740-0020(03)00065-0

Chouliara, I., Savvaidis, I.N., Riganakos, K., Kontominas, M.G. (2005). Shelf-life extension of vacuum-packaged sea bream (*Sparus aurata*) fillets by combined γ irradiation and refrigeration: microbiological, chemical and sensory changes, *Journal of the Science of Food and Agriculture*, **85**: 779-784.

doi: <u>10.1002/jsfa.2021</u>

- Chuaqui-Offermanns, N., Mc Dougall, T.E., Sprung, W., Sullvan, V., (1988). Raduriation of commercial freshwater fish species, *Radiation Physics and Chemistry*, **31**: 243-252.
- Cruz-Romero, M., Kelly, A. L., Kerry, J. P. (2008a). Effects of high-pressure treatment on the microflora of oysters (*Crassostrea* gigas) during chilled storage, *Innovative* Food Science and Emerging Technologies, 9: 441-447.

doi: <u>10.1016/j.ifset.2008.04.002</u>

Cruz-Romero, M., Kelly, A.L., Kerry, J.P. (2008b). Influence of packaging strategy on microbiological and biochemical changes in high-pressure-treated oysters (*Crassostrea* gigas), Journal of the Science of Food and Agriculture, **88**: 2713-2723.

doi: 10.1002/jsfa.3398

- Erkan, N., (2003). Verderb von Fisch und Fischwaren- chemische und mikrobiologische Veränderungen und Gefahren. *Rundschau für Fleischhygiene und Lebensmittelüberwachung*, **55**: 254-258.
- Erkan, N., Üretener, G., (2010). The effect of high hydrostatic pressure on the microbiological, chemical and sensory quality of fresh gilthead sea bream (*Sparus aurata*), *European Food Research and Technology*, **230**: 533-542.

doi: <u>10.1007/s00217-009-1193-y</u>

Erkan, N., Üretener, G., Alpas, H., (2010). Effect of high pressure (HP) on the quality and shelf life of red mullet (*Mullus surmelutus*), *Innovative Food Science and Emerging Technologies*, **11**: 259-264.

doi: <u>10.1016/j.ifset.2010.01.001</u>

- Erkan, N., Çağıltay, F., (2011). The effects of cultural factors and consumer knowledge on fish consumption, *Food Engineering and Ingredients*, **36**: 42-45.
- Erkan, N., Üretener, G., Alpas, H., Selcuk, A., Özden, Ö., Buzrul, S., (2011). The effect of different high pressure conditions on the quality and shelf life of cold smoked fish, *Innovative Food Science and Emerging Technologies*, **12**: 104-110.

doi: 10.1016/j.ifset.2010.12.004

- Genç, İ.Y., Diler, A., (2013). Elimination of foodborne pathogens in seafoods by irradiation: Effects on quality and shelf-life, *Journal of Food Science and Engineering*, 3: 99-106.
- Gómez-Estaca, J., Montero, P., Gimenez, B., Gómez-Guillén, M.C., (2007a). Effect of functional edible films and high pressure processing on microbial growth and oxidative spoilage in cold-smoke sardine (*Sardina pilchardus*), *Food Chemistry*, **105**: 511-520.

doi: 10.1016/j.foodchem.2007.04.006

Gómez-Estaca, J., Gómez-Guillén, M.C., Montero, P., (2007b). High pressure effects on the quality and preservation of coldsmoked dolphinfish (*Coryphaena hippurus*) fillets, *Food Chemistry*, **102**: 1250-1259.

doi: 10.1016/j.foodchem.2006.07.014

Gou, J., Lee, H.Y., Ahn, J., (2010). Effect of high pressure processing on the quality of squid (*Todarodes pacificus*) during refrigerated storage. *Food Chemistry*, **119**: 471-476.

doi: 10.1016/j.foodchem.2009.06.042

Günlü, A., Sipahioğlu, S., Alpas, H. (2014). The effect of chitosan-based edible film and high hydrostatic pressure process on the microbiological and chemical quality of rainbow trout (*Oncorhynchus mykiss* Walbaum) fillets during cold storage ($4 \pm 1^{\circ}$ C), High Pressure Research, **34**(1): 110-121.

doi: 10.1080/08957959.2013.836643

Hurtado, J.L., Montero, P., Borderías, A.J., (2000). Extension of shelf life of chilled hake (*Merluccius capensis*) by high pressure, *Food Science Technology International*, **6**(3): 243-249.

doi: <u>10.1177/108201320000600307</u>

Jeevanandam, K., Kakatkar, A., Doke, S. N., Bongirwar, D.R., Venugopal, V., (2001). Influence of salting and gamma irradiation on the shelf-life extension of threadfin bream in ice, *Food Research International*, 34: 739-746.

doi: 10.1016/S0963-9969(01)00100-4

Kamalakanth, C.K., Ginson, J., Bindu, J., Venkateswarlu, R., Das, S., Chauhan, O.P., Gopal, T.K.S., (2011). Effect of high pressure on K-value, microbial and sensory characteristics of yellowfin tuna (*Thunnus albacares*) chunks in EVOH films during chill storage, *Innovative Food Science and Emerging Technologies*, **12**: 451-455.

doi: 10.1016/j.ifset.2011.06.001

Kasımoglu, A., Denli, E., Ic, E. (2003). The extension of the shelf-life of sardine which were packaged in a vacuum stored under refrigeration, and treated by d-irradiation, *International Journal of Food Science and Technology*, **38**: 529-535.

doi: 10.1046/j.1365-2621.2003.00697.x

Karim, N.U., Kennedy, T., Linton, M., Watson, S., Gault, N., Patterson, MF., (2011). Effect of high pressure processing on the quality of herring (*Clupea harengus*) and haddock (*Melanogrammus aeglefinus*) stored on ice, *Food Control*, 22: 476-484.

doi: 10.1016/j.foodcont.2010.09.030

Kaur, B.P., Kaushik, N., Rao, P.S., Chauhan, O.P., (2013). Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of Black Tiger shrimp (*Penaeus monodon*) Highpressure processing of shrimp, *Food Bioprocess Technology*, 6: 1390-1400.

doi: 10.1007/s11947-012-0870-1

Kumta, U.S., Mavinkurve, S. S., Gore, M.S., Sawant, P.L., Gangal, S.V., Sreenivasin, A., 1970. Radiation pasteurization of fresh and blanced tropical shrimps, *Journal of Food Science*, **35**: 360-363.

doi: 10.1111/j.1365-2621.1970.tb00930.x

Lakshmanan, R., Venugopal, V., Rao, B. Y.K., Bongirwar, D.R., (1999). Stability of lipids of Indian mackerel to gamma irradiation, *Journal of Food Lipids*, **6**: 277-285.

doi: 10.1111/j.1745-4522.1999.tb00150.x

- Lakshmanan, R., Miskin, D., Piggott, J.R., (2005). Quality of vacuum packed coldsmoked salmon during refrigerated storage as affected by high-pressure processing, *Journal of the Science of Food and Agriculture*, 85: 655-661. doi: 10.1002/jsfa.1972
- Linton, M., Mc Clements, J.M.J., Patterson, M.F., (2003). Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure, *International Journal of Food Science and Technology*, **38**: 713-727.

doi: 10.1046/j.1365-2621.2003.00724.x

Matser, A.M., Stegeman, D., Kals, J., Bartels, P.V., (2000). Effects of high pressure on colour and texture of fish, *High Pressure Research*, **19**: 109-115.

doi: <u>10.1080/08957950008202543</u>

Medina-Meza, G.I., Barnaba, C., Barbosa-Cánovas, G.V., (2014).Effects of high pressure processing on lipid oxidation: A Review, *Innovative Food Science and Emerging Technologies*, **22**:1–10.

doi: <u>10.1016/j.ifset.2013.10.012</u>

Mendes, R., Silva, H.A., Nunes, M.L., Empis, J.M.A., (2000). Deteriorative changes during ice storage of irradiated blue jack mackerel (*Trachurus picturatus*), *Journal of Food Biochemistry*, **24**: 89-105.

doi: <u>10.1111/j.1745-4514.2000.tb00688.x</u>

Mendes, R., Silva, H.A., Nunes, M.L., Empis, J.M.A., (2005). Effect of low-dose irradiation and refrigeration on the microflora. sensory characteristics and biogenic amines of Atlantic horse mackerel (Trachurus trachurus), European Food Research and Technology, 221: 329-335.

doi: 10.1007/s00217-005-1172-x

Montial, R., De Alba, M., Bravo, D., Gaya, P., Medina, M., (2012). Effect of high pressure treatments on smoked cod quality during refrigerated storage, *Food Control*, **23**: 429-436.

doi: 10.1016/j.foodcont.2011.08.011

O'bryan, C., Crandall, PG., Ricke, S.C., Olson, D.G., (2008). Impact of irradiation on the safety and quality of poultry and meat products: A Review, *Critical Reviews in Food Science and Nutrition*, **48**: 442-457.

doi: 10.1080/10408390701425698

Özden, Ö., İnuğur, M., Erkan, N., (2007a). Preservation of iced refrigerated sea bream (*Sparus aurata*) by irradiation: microbiological, chemical and sensory attributes, *European Food Research and Technology*, **225**: 797-805.

doi: <u>10.1007/s00217-006-0484-9</u>

Özden, Ö., İnuğur, M., Erkan, N., (2007b). Effect of different dose gamma radiation and refrigeration on the chemical and sensory properties and microbiological status of aqua cultured sea bass (*Dicentrarchus labrax*), *Radiation Physics and Chemistry*, **76**: 1169-1178.

doi: 10.1016/j.radphyschem.2006.11.010

Ramirez-Suarez, J.C. and Morrissey, M.T., (2006). Effect of high pressure processing (HPP) on shelf life of albacore tuna (*Thunnus alalunga*) minced muscle, *Innovative Food Science and Emerging Technologies*, **7**: 19-27.

doi: 10.1016/j.ifset.2005.08.004

- Reinacher, E., Ehlermann, D., (1978). Effect of irradiation on board on the shelf life of red fish. 1. Results of the sensory examination. *Archiv für Lebensmittelhygiene*, **29**: 24-28.
- Savvaidis, I.N., Skandamis, P., Riganakos, K., Panagiotakis, N., Kontominas, M.G. (2002). Control of natural microbial flora and *Listeria monocytogenes* in vacuum packed trout at 4 and 10°C using irradiation, *Journal of Food Protection*, **65**: 515-522.

- Sioen, I., (2007). The nutritional-toxicological conflict related to seafood consumption, PhD-Thesis Ghent University, Ghent, Belgium.
- Snauwert, F., Tobback, P., Maes, E. and Thyssen, J., (1977). Radiation induced lipid oxidation in fish, *Zeitscrift für Lebensmittel Untersuchung Forschung*, **164**: 28-30.

doi: 10.1007/BF01135420

Venugopal, V., Doke, S.N., Thomas, P., (1999). Radiation processing to improve the quality of fishery products, *Critical Reviews in Food Science and Nutrition*, **39**: 391-440.

doi: 10.1080/10408699991279222

- Vyncke, W., Declerk, D., Scietecatte, W., (1976). Infuence of gas permeability of the packaging material on the shelf life of irradiated and non-irradiated brown shrimps (*Crangon vulgaris*), *Lebensmittel Wissenschaft and Technology*, **9**: 14-17.
- Yağız, Y., Kristinsson, H.G., Balaban, M.O., Marshall, M.R., (2007). Effect of high pressure treatment on the quality of rainbow trout (*Oncorhynchus mykiss*) and mahi mahi (*Coryphaena hippurus*), Journal of Food Science, **72**: 509-515.

doi: 10.1111/j.1750-3841.2007.00560.x

Yuste, J., Capellas, M., Pla, R., Fung, D.Y.C., Mor-Mur, M., (2001). High pressure processing for food safety and preservation: A review, *Journal of Rapid Methods and Automation in Microbiology*, **9**: 1-10.

doi: <u>10.1111/j.1745-4581.2001.tb00223.x</u>

Zare, Z., (2004). High pressure processing of fresh tuna fish and its effects on shelf life. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the degree of Master of Science, Mc Gill University, Montreal, Quebec, Canada.